

Motivations and Contributions

Motivations:

- Most existing neural networks for 3D point cloud can NOT guarantee rotation invariance.
- Networks trained with simple ration augmentations are NOT able to generalize well to unseen rotations.
- A few existing convolution operators that allows rotation invariance still can NOT achieve consistent predictions with arbitrarily rotated data.

Main Contributions:

- A robust feature extraction scheme suitable for convolution that supports both rotation and translation invariant features based on low-level geometric cues;
- A novel convolution operator that is agnostic to both point cloud rotations and point orders.
- A simple binning approach that can be seamlessly combined with the feature extraction step;
- A compact convolutional neural network for object classification and object part segmentation achieving highly consistent and accurate performance under different rotations.

Rotation Invariant Convolutions for 3D Point Clouds Deep Learning

Zhiyuan Zhang¹Binh-Son Hua²David W. Rosen¹Sai-Kit Yeung³ ¹Singapore University of Technology and Design ²The University of Tokyo ³Hong Kong University of Science and Technology

onvolution	Rotation Invariant Neural
ι ν)	Network (RiNet)
1p	
$\frac{1}{4}m$	Algorithm 1 RIConv operator.
\overrightarrow{pm} I	nput: Reference point p , point set P , features F_{prev} ; Dutput: Convoluted features F ;
$1\overline{pm}$	$m \leftarrow avg(P);$ * Compute the centroid of P $\overrightarrow{pm} \leftarrow m - p;$ * Determine the reference orientation
$, lpha_1]$	$f_r \leftarrow \{RIF(x; \overline{pm}) : \forall x \in P\};$ * Find rotation invariant features
	$F_r \leftarrow mlp(f_r)$; * Transform each feature f_r to high-dimensional feature F_r
>	$F_{in} \leftarrow [F_{prev}, F_r];$ * Concatenate the local and previous layer features
1D Convo	$\{S\} \leftarrow P;$ * Divide local space into s bins along \overrightarrow{pm} $\{F_{pool}\} \leftarrow \{\max pool(\{F_{in}(x) : \forall x \in s\}) : \forall s \in S\}$ * Max pool features for each bin of $\{S\}$
	$F \leftarrow \operatorname{conv}(\{F_{pool}\});$ * 1D convolution of the bin features
	return F;

Classification results on ModelNet40 dataset:

Metho VoxN SubVo SubVo Spher MVC] MVC] Point Point

Ours

Point

SO3/3 Point Point Point DGC Spide Ours

> z/SO

Point Point Point DGC Spide Ours

ualitative results on ShapeNet dataset:

SpiderCNN GT PointNet++ Ours DGCNN GT Acknowledgement: The authors acknowledge support from the SUTD Digital Manufacturing and Design Centre (DManD) funded by the Singapore National Research Foundation. This project is also partially supported by Singapore MOE Academic Research Fund MOE2016-T2-2-154 and Singapore NRF under its Virtual Singapore Award No. NRF2015VSGAA3DCM001-014.

Experiments & Results

bd	Input	Input size	Parameters	z/z	SO3/SO3	z/SO3	P
et	voxel	30^{3}	0.9M	83.0	87.3	-	
olSup	voxel	30^{3}	17M	88.5	82.7	36.6	
olSup MO	voxel	30^{3}	17M	89.5	85.0	45.5	
ical CNN	voxel	2×64^2	0.5M	88.9	86.9	78.6	
NN 12x	view	12×224^2	99M	89.5	77.6	70.1	
NN 80x	view	80×224^2	99M	90.2	86.0	81.5	
Net	xyz	1024×3	3.5M	87.0	80.3	12.8	
Net++	xyz	1024×3	1.4M	89.3	85.0	28.6	
CNN	xyz	1024×3	0.60M	91.3	84.5	41.2	
	xyz	1024 ×3	0.70M	86.5	86.4	86.4	

Part Segmentation results on ShapeNet dataset:

'SO3	mIoU	aero	bag	cap	car	chair	earph.	guitar	knife	lamp	laptop	motor	mug	pistol	rocket	skate	table
tNet	74.4	81.6	68.7	74.0	70.3	87.6	68.5	88.9	80.0	74.9	83.6	56.5	77.6	75.2	53.9	69.4	79.9
tNet++	76.7	79.5	71.6	87.7	70.7	88.8	64.9	88.8	78.1	79.2	94.9	54.3	92.0	76.4	50.3	68.4	81.0
tCNN	71.4	78.0	80.1	78.2	68.2	81.2	70.2	82.0	70.6	68.9	80.8	48.6	77.3	63.2	50.6	63.2	82.0
CNN	73.3	77.7	71.8	77.7	55.2	87.3	68.7	88.7	85.5	81.8	81.3	36.2	86.0	77.3	51.6	65.3	80.2
erCNN	72.3	74.3	72.4	72.6	58.4	82.0	68.5	87.8	81.3	71.3	94.5	45.7	88.1	83.4	50.5	60.8	78.3
	75.5	80.6	80.2	70.7	68.8	86.8	70.4	87.2	84.3	78.0	80.1	57.3	91.2	71.3	52.1	66.6	78.5
3	mIoU	aero	bag	cap	car	chair	earph.	guitar	knife	lamp	laptop	motor	mug	pistol	rocket	skate	table
3 tNet	mIoU 37.8	aero 40.4	bag 48.1	cap 46.3	car 24.5	chair 45.1	earph. 39.4	guitar 29.2	knife 42.6	lamp 52.7	laptop 36.7	motor 21.2	mug 55.0	pistol 29.7	rocket 26.6	skate 32.1	table 35.8
3 tNet tNet++	mIoU 37.8 48.2	aero 40.4 51.3	bag 48.1 66.0	cap 46.3 50.8	car 24.5 25.2	chair 45.1 66.7	earph. 39.4 27.7	guitar 29.2 29.7	knife 42.6 65.6	lamp 52.7 59.7	laptop 36.7 70.1	motor 21.2 17.2	mug 55.0 67.3	pistol 29.7 49.9	rocket 26.6 23.4	skate 32.1 43.8	table 35.8 57.6
3 tNet tNet++ tCNN	mIoU 37.8 48.2 34.7	aero 40.4 51.3 21.8	bag 48.1 66.0 52.0	cap 46.3 50.8 52.1	car 24.5 25.2 23.6	chair 45.1 66.7 29.4	earph. 39.4 27.7 18.2	guitar 29.2 29.7 40.7	knife 42.6 65.6 36.9	lamp 52.7 59.7 51.1	laptop 36.7 70.1 33.1	motor 21.2 17.2 18.9	mug 55.0 67.3 48.0	pistol 29.7 49.9 23.0	rocket 26.6 23.4 27.7	skate 32.1 43.8 38.6	table 35.8 57.6 39.9
3 tNet tNet++ tCNN 2NN	mIoU 37.8 48.2 34.7 37.4	aero 40.4 51.3 21.8 37.0	bag 48.1 66.0 52.0 50.2	cap 46.3 50.8 52.1 38.5	car 24.5 25.2 23.6 24.1	chair 45.1 66.7 29.4 43.9	earph. 39.4 27.7 18.2 32.3	guitar 29.2 29.7 40.7 23.7	knife 42.6 65.6 36.9 48.6	lamp 52.7 59.7 51.1 54.8	laptop 36.7 70.1 33.1 28.7	motor 21.2 17.2 18.9 17.8	mug 55.0 67.3 48.0 74.4	pistol 29.7 49.9 23.0 25.2	rocket 26.6 23.4 27.7 24.1	skate 32.1 43.8 38.6 43.1	table 35.8 57.6 39.9 32.3
3 tNet tNet++ tCNN tCNN 2NN erCNN	mIoU 37.8 48.2 34.7 37.4 42.9	aero 40.4 51.3 21.8 37.0 48.8	bag 48.1 66.0 52.0 50.2 47.9	cap 46.3 50.8 52.1 38.5 41.0	car 24.5 25.2 23.6 24.1 25.1	chair 45.1 66.7 29.4 43.9 59.8	earph. 39.4 27.7 18.2 32.3 23.0	guitar 29.2 29.7 40.7 23.7 28.5	knife 42.6 65.6 36.9 48.6 49.5	lamp 52.7 59.7 51.1 54.8 45.0	laptop 36.7 70.1 33.1 28.7 83.6	motor 21.2 17.2 18.9 17.8 20.9	mug 55.0 67.3 48.0 74.4 55.1	pistol 29.7 49.9 23.0 25.2 41.7	rocket 26.6 23.4 27.7 24.1 36.5	skate 32.1 43.8 38.6 43.1 39.2	table 35.8 57.6 39.9 32.3 41.2

B 2019 International Conference on 3D Vision Québec City, Canada September 16 - 19, 2019

SpiderCNN Ours PointNet++ DGCNN