

SceneNN: A Scene Meshes Dataset with aNNotations

Binh-Son Hua¹

Quang-Hieu Pham¹ Lap-Fai Yu³

Duc Thanh Nguyen² Sai-Kit Yeung¹

Minh-Khoi Tran¹

SINGAPORE UNIVERSITY OF TECHNOLOGY AND DESIGN

International Conference on 3D Vision 2016

- ¹ Singapore University of Technology and Design ² Deakin University
 - ³ University of Massachusetts Boston

Motivation

Dataset	Quantity	Annotation	Format	Pose
NYU v2	1449 frames	All	Image	N
SUN RGB-D	10K frames	All	Image	Ν
RGB-D v2	17 scenes	All	Cloud	Y
TUM	47 scenes	N.A.	Image	Y
SUN3D	254 scenes	8 scenes	Cloud	Y
Ours	100 scenes	All	Mesh	Y

SceneNN dataset

http://www.scenenn.net

- 100+ RGBD scenes
- Raw videos from 2,000 to more than 10,000 frames
- Reconstructed triangle meshes in PLY format
- Per-frame camera poses
- Per-vertex and per-pixel labelling
- Annotated bounding boxes, object poses
- Categories: Workplace (27) Bedroom (19) Living room (8) Kitchen (11) Study space (9) Meeting space (3) Lounge (8) Other (10), Asus Xtion and Kinect v2 comparison (6)

Input

3D reconstruction

3D reconstruction

Output: 3D segmentation and annotation

Output: 2D segmentation and annotation

Workflow summary

- Triangle mesh
- Camera poses

monitor keyboard poster cabine bookshelves trash bin

- Per-vertex and per-pixel labels
- Bounding boxes, object poses

RGBD Reconstruction

Elastic Reconstruction [Choi et al., CVPR 2015] ¹⁰

DVO SLAM [Kerl et al., IROS 2013]

Reconstruction statistics

CPU Intel Core i7 5960X @3Ghz, 32GB RAM

- Triangle mesh
- Camera poses

monitor
keyboard
poster
cabine
bookshelves
trash bin

- Per-vertex and per-pixel labels
- Bounding boxes, object poses

Graph-based segmentation

- Supervertices

Markov random field

– Regions

Imperfect segmentation

Over-segmentation

Under-segmentation

User interaction

Merge

Before

Extract

Before

Split

Before

Example

Final results

Refined segmentation

Annotation and bounding boxes

Proof-of-concept applications

- Annotation transfer
- Shape completion
- Scene relighting
- CAD scene synthesis
- Novel view synthesis

Annotation transfer

Nearest neighbour label propagated

Input

Annotation transfer

Nearest neighbour label propagated

Input

Geometry-level shape completion

Input

Screened Poisson reconstruction [Kazhdan and Hoppe, SGP 2013]₂₅

Semantic-level object completion

Scene relighting

Relighting

Input

Reflectance

Scene synthesis

Co-occurrence [Xu et al., TOG 2013]

28

Placement probabilities [Chen et al., MM 2015]

chair

desk

Novel view: widening FOV

Novel view: widening FOV / near plane clipping

• **100+** RGBD scenes with fine-grained annotation.

- Potential applications
 - Annotation transfer
 - Shape completion
 - Scene relighting
 - Scene analysis and synthesis
 - Novel view synthesis
- Future works
 - Online platform for benchmarking, e.g., object detection and recognition.
 - Extend and maintain the dataset with help from community.

Challenges

- Current reconstruction takes 1 2 hours to complete.
- Current annotation technique requires 30 45 minutes per scene for refining segmentation and annotation.
- Texture is generated using a baseline method.
- Resolution 640 x 480 is limited but no better consumer-grade RGBD camera is available.

Before we end...

More segmentation and annotation from some popular categories:

- Workplace
- Bedroom
- Livingroom
- Kitchen
- Lounge

Acknowledgement

We would like to extend our sincere gratitude and appreciation to

- Fangyu Lin for his assistance with the data capture.
- Guoxuan Zhang for early development of the annotation tool.
- The anonymous reviewers for their constructive comments.
- Jamie Shotton (Microsoft Research) for the Kitchen scene data.
- NVIDIA for graphics card donation.
- Singapore National Research Foundation (NRF) and the U.S. National Science Foundation (NSF) for funding support.

The team

Thank you!

http://www.scenenn.net

- Dataset download script (Python)
- Annotation tool (Windows and Linux) Code available upon request.
- Supplemental and technical reports
- Contact: scenenn@gmail.com

