
ShellNet: Efficient Point Cloud Convolutional Neural Networks using Concentric Shells Statistics
Zhiyuan Zhang1

cszyzhang@gmail.com

Binh-Son Hua2

binhson.hua@gmail.com

Sai-Kit Yeung3

saikit@ust.hk
1Singapore University of Technology and Design 2The University of Tokyo 3The Hong Kong University of Science and Technology

Contributions
• ShellConv, a simple yet effective convolution operator for orderless point cloud;
• ShellNet, an efficient neural network based on ShellConv.
• The state-of-the-art accuracy and efficiency are achieved on object classification, part segmentation, and semantic segmentation;

Quantitative Results
Classification results on ModelNet40:

Method Core Operator input format OA

FPNN 1D Conv. Point 87.5
Vol. CNN 3D Conv. Voxel 89.9
O-CNN Sparse 3D Conv. Octree 90.6
Pointwise Point Conv. Point 86.1
PointNet Point MLP Point 89.2
PointNet++ Multiscale Point MLP Point+Normal 90.7
PointCNN X-Conv Point 92.2

ShellNet (ss=8) ShellConv Point 91.0
ShellNet (ss=16) ShellConv Point 93.1
ShellNet (ss=32) ShellConv Point 93.1
ShellNet (ss=64) ShellConv Point 92.8

Segmentation results:

Method ShapeNet ScanNet S3DIS Semantic3D
mpIoU OA mIoU mIoU

SyncCNN 82.0 - - -
SpiderCNN 81.7 - - -
SplatNet 83.7 - - -
SO-Net 81.0 - - -
SGPN 82.8 - 50.4 -
PCNN 81.8 - - -
KCNet 82.2 - - -
3DmFV-Net 81.0 - - -
DGCNN 82.3 - 56.1 -
RSNet 81.4 - 56.5 -
PointNet 80.4 73.9 47.6 -
PointNet++ 81.9 84.5 - -
PointCNN 84.6 85.1 65.4 -
TMLC-MSR - - - 54.2
DeePr3SS - - - 58.5
SnapNet - - - 59.1
SegCloud - - - 61.3
SPG - - 62.1 73.2

ShellNet 82.8 85.2 66.8 69.4

Timing

The accuracy of point cloud classification of different methods over time
and epochs.It can achieve over 80% accuracy within two minutes, and
reach 90% on the test dataset after only 15 minutes of training.

Qualitative Results
Object Part Segmentation on ShapeNet:

P
re

di
ct

io
n

G
ro

un
d 

tr
ut

h

Indoor Scene Semantic Segmentation on S3DIS:

Outdoor Scene Semantic Segmentation on Semantic3D:

Network Efficiency
Methods Params FLOPs Time

(Train/Infer) (Train/Infer)

PointNet 3.5M 44.0B / 14.7B 0.068s / 0.015s
PointNet++ 12.4M 67.9B /26.9B 0.091s / 0.027s
3DmFV 45.77M 48.6B /16.9B 0.101s / 0.039s
DGCNN 1.84M 131.4B /44.3B 0.171s / 0.064s
PointCNN 0.6M 93.0B /25.3B 0.031s / 0.012s

ShellNet 0.48M 15.8B /2.8B 0.066s / 0.023s
with small RF 0.48M 9.51B /1.5B 0.025s / 0.011s

Trainable parameters, FLOPs and running time comparisons. Compared
to other methods, ShellNet is lightweight and fast while being accurate.
Reducing the receptive field (small RF) by setting a smaller shell size can
make the computation even faster as neighbor query becomes cheaper.

Ablation Study
(A) (B) (C) (D)

1. Sampling Random Farthest Random Random
2. Shell size Fixed Fixed Dynamic Fixed
3. KNN type xyz xyz xyz Features

Accuracy (%) 93.1 93.1 92.7 92.4
Train Time 0.066s 0.078s 0.118s 0.081s
Infer. Time 0.023s 0.024s 0.033s 0.029s

Experiments with neighbor point sampling. Setting (A) is the default strat-
egy. Setting (B), (C), (D) are modified from (A) based on point sampling
type, shell size, and neighbor query features. As can be seen, setting (B)
– furthest point sampling, (C) – equidistant shells, (D) – latent features
for neighborhood construction, produces similar accuracy but training and
inference time becomes slower.

Acknowledgement
The authors acknowledge support from the SUTD Digital Manufacturing and Design Centre funded by the Singapore National Research Foundation,and an internal grant
from HKUST (R9429).

ShellConv

Algorithm 1 ShellConv operator.
Input: p, Ωp, {Fprev(q) : q ∈ Ωp} * Representative point, point set, and

previous layer features of point set
Output: Convoluted features Fp;
{q} ← {q − p : ∀q ∈ Ωp} * Centralization with p as the center.
{Flocal(q)} ← {mlp(q)} * Lift each q to a higher dimensional space.
{F (q)} ← {[Fprev(q), Flocal(q)} * Concatenate the local and
previous layer features.
{S} ← {S : q ∈ ΩS} * Determine which shell q belongs to according
the distances from q to center p.
{F (S)} ← {maxpool({F (q) : q ∈ ΩS}) : ∀S} * Get fixed-size
feature of each shell by a maxpool over all points in the shell.
Fp ← conv({F (S)}) * Perform a 1D convolution with all shell features
from inner to outer.
return Fp;

ShellNet

• Ni = {512, 128, 32}, Si = {4, 2, 1}, Ci = {128, 256, 512} for i = 0, 1, 2
• Shell Size (number of points contained in each shell) is set to 16 for classification and 8 for segmentation
• Network is implemented in TensorFlow and run on a NVIDIA GTX 1080 GPU for all experiments
• The optimization is done with an Adam optimizer with initial learning rate set to 0.001


